Monidas

Strombolian seismic activity characterisation using fibre-optic cable and distributed acoustic sensing

JP Métaxian ${ }^{1}$, F. Biagioli ${ }^{1,2}$, E. Stutzmann ${ }^{1}$, M. Ripepe ${ }^{2}$, P. Bernard ${ }^{1}$, R. Longo ${ }^{3}$, A. Trabattoni ${ }^{3}$, MP Bouin ${ }^{1}$, F. Léger ${ }^{1}$, G. Plantier ${ }^{3}$

1 IPGP, Université de Paris
2 LGS, Université de Florence
3 ESEO
(andin)

Objectifs du projet (2020-2023)

- Observer des signaux de strain avec de la fibre optique sur un volcan actif
- Caractériser et calibrer le signal enregistré par la fibre en le comparant à des signaux enregistrés par les capteurs inertiels (BB et nodes) ou autre capteur optique (FabryPérot).
- Analyser les processus de couplage avec le sol
- Tester la géométrie de réseaux denses de fibre
- Analyser la propagation du champ d'ondes dans la structure volcanique
- Analyser les processus éruptifs: localisation
 de sources dans le conduit
- Imager les structures à différentes échelles

Enregistreur Febus-Optics

- Evaluer les applications pour le risque volcanique (Défense civile italienne)

Situation tectonique et dynamique éruptive

Carazzato et al., 2008

Ripepe et al., 2015

Puffing

Rapid explosions

Type 0 expl. Type 1 explosion

Type 2 explosion

Gaudin et al., 2016

Activité sismique entre 0.02 Hz et 50 Hz

QP: Quiet phase PP: Puffing phase
EP: Explosion phase
Explosions from:

- North-East
- Central
- South-West craters

Monitoring network

BB seismic sensors, Tilmeters, infrasound sensors, Optic and thermal cameras, SO2 camera, Multigas sensors

LGS vih
 Laboratorio Geofisica Sperimentale

UNIVERSITȦ
DEGLI STUDI
FIRENZE
Home RESEARCH REPORTS PUBLICATIONS

MONITORING PARTNERS TEAM NEWS
-

Station STR

Real time	Seismic U/D
Processing	Seismic N/S
Archive	Seismic VLP
Info	Pressure
Activity Leve	
Daily Report	

Campagne septembre 2020

1 km de câble (8 fibres, «tight buffered»)

22 nodes 3C (5 Hz):
SmartSolo IGU-16HR 3C (250 Hz)

1 sismomètre (30 s): Guralp CMG-40T ($\mathbf{1 0 0 ~ H z) ~}$

DAS interrogator:
Febus A1-R (V3)

Enregistrement: 21-23/09 2020

- Gauge length $=5 \mathrm{~m}$
- Echantillonnage spatial $=2.4 \mathrm{~m}$
- Fréquence d'échantillonnage $=200 \mathrm{~Hz}$
- 363 points de mesure
- Orientation du câble en couleurs

Technique d'installation de la fibre

Contenu spectral

Signal de strain rate d'une explosion

VLP enregistré par le DAS

VLP seismic events:

- Filtré entre 0.03-1 Hz;
- Cycles inflation-déflation-inflation;
- Intimement lié aux processus de coalescence-rising-explosion de grosses bulles de gaz dans le conduit.

Strain rate filtré $0.03-1 \mathrm{~Hz}$

Comparaison de formes d'ondes SR vs vitesse

La possibilité d'utiliser les méthodes sismiques classiques dépend de la capacité à convertir de manière fiable les mesures de déformation en mouvements du sol.

Conversion de strain (rate) en déplacement du sol: Méthode ponctuelle

$$
\begin{aligned}
\varepsilon_{x} & = \pm s \dot{u}_{x} \\
\dot{\varepsilon}_{x} & = \pm s \ddot{u}_{x}
\end{aligned}
$$

Conversion par estimation de la lenteur apparente le long de la fibre du strain en vitesse ou strain rate en accelération

Wang et al., 2018; Lindsey et al., 2020; Lior et al., 2021

Méthode par différences finies des vitesses

$$
\begin{aligned}
& \dot{\varepsilon}\left[-\frac{(n-1) L_{G}}{2}\right]+\cdots+\dot{\varepsilon}[0]+\cdots+\dot{\varepsilon}\left[+\frac{(n-1) L_{G}}{2}\right]= \\
& =\frac{\dot{u}\left(\frac{n L_{G}}{2}\right)-\dot{u}\left(-\frac{n L_{G}}{2}\right)}{L_{G}}
\end{aligned}
$$

Wang et al., 2018

Analyse d'antenne

$$
\begin{array}{ll}
\tau_{i j}=\mathbf{S} \cdot \mathbf{r}_{i j} & \begin{array}{l}
\text { 1) i,j nodes du réseau } \\
\text { 2) i,j canaux/segment du réseau }
\end{array}
\end{array}
$$

Campagne de mesures 2021 (15/09-21/10)

Données:

- 3 km de cable $\times 2$ (aller-retour)
- 38 nodes + 3 large bande
- Strain meter optique Fabrypérot

Objectifs:

- Évolution du couplage avec le temps, la météo, comparaison avec d'autres capteurs inertiels et optiques
- Localisation de l'activité magmatique dans les différentes cratères

Conclusions et perspectives

- Déploiement de 3 km de câble à moins d'un km du cratère (ouverture 30°)
- Les formes d'onde de strain mesurées avec le DAS sont bien corrélées avec les formes d'ondes de vitesse mesurées avec les géophones
- Résultats préliminaires d'analyse d'antenne
- Thèse financée par Monidas de Francesco Biagioli (UNIFI-IPGP) 2021-2024
- Différentiation de l'activité des différentes bouches éruptives en localisant les sources éruptives (mesures de décalages temporels)
- Extension du réseau de fibre autour de la zone des cratères septembre 2022
- Activité plus profonde (sous le réservoir magmatique): remontée du magma depuis le réservoir profond (10 km)
- Essais au printemps 2022 avec des 3 OBS
- Extension de câbles optiques en s'éloignant des cratères jusqu'à la mer et sous marins

